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Nonequilibrium phase transition in the kinetic Ising model: Divergences of fluctuations
and responses near the transition point
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The nonequilibrium dynamic phase transition in the kinetic Ising model in the presence of an oscillating
magnetic field is studied by Monte Carlo simulation. The fluctuation of the dynamic order parameter is studied
as a function of temperature near the dynamic transition point. The temperature variation of appropriately
defined “susceptibility” is also studied near the dynamic transition point. Similarly, the fluctuation of energy
and appropriately defined “specific heat” is studied as a function of temperature near the dynamic transition
point. In both cases, the fluctuatiof@ dynamic order parameter and energnd the corresponding responses
diverge(in power law fashiopnear the dynamic transition point with similar critical behavieith identical
exponent values[S1063-651X97)02906-1

PACS numbss): 05.50+q

[. INTRODUCTION transition temperature without any figldhen the response
magnetization varies periodically but asymmetrically even in
The physics of the equilibrium phase transition in thethe zero frequency limit; the system remains locked to one
Ising model is well understodd]. However, the mechanism Wwell of the free energy, and cannot go to the other one, in the
behind the nonequilibrium phase transition has not yet beegbsence of fluctuation.
explored rigorously, and the basic phenomenology is still The true dynamic nature of this kind of phase transition
undeveloped. It is quite interesting to study how the systentin the presence of fluctuatipnvas studied by Lo and Pel-
behaves if it is driven out of equilibrium. The simplest pro- COVits [6]. They studied the dynamic phase transition in the
totype example is the kinetic Ising model in an oscillating kinetic Ising model in the presence of an oscillating magnetic

magnetic field. In this context, the dynamic response of théield by Monte CarloMC) simulation which allows the mi-

Ising system in the presence of an oscillating magnetic fiekfrOSCOpiC fluctua_lti(_)ns. Here the transiti_on disappears in_ the
has been studied extensivéB—7] in the last few years. The zero frequency limit; due to the fluctuations, the magnetiza-

dynamic hysteresi§2—4] and the nonequilibrium dynamic tion flips in the direction of the magnetic field and the dy-
phase transitiofi5—7] are two important aspects of the dy- namic order parametdtime-averaged magnetizatipnan-

: TN . ishes. However, they6] did not report any precise phase
namic response of the kinetic Ising model in the presence oundary. Acharyya and Chakrabaf#l] studied the non-
an oscillating magnetic field. The nonequilibrium dynamicequilibrium dynamic phase transition in the kinetic Ising

phase transition in the kinetic Ising model in the presence of,qdel in the presence of an oscillating magnetic field by
an oscillating magnetic field was first studied by Tome andeytensive MC simulation. The}7] also identified that this
Oliviera [5]. They solved the mean-fieldMF) dynamic  dynamic phase transitioat a particular nonzero frequency
equation of motion(for the average magnetizatioof the  of the oscillating magnetic fie)ds associated with the break-
kinetic Ising model in the presence of a sinusoidally oscillat-ing of the symmetry of the dynamic hysteresis— h) loop.
ing magnetic field. By defining the dynamic order parametein the dynamically disordered phagghere the value of the
as the time-averaged magnetization over a full cycle of th@rder parameter vanishethe corresponding hysteresis loop
oscillating magnetic field, they showed that, depending upois symmetric, and loses its symmetry in the ordered phase
the value of the field amplitude and the temperature, thé€giving a nonzero value of dynamic order paramet&hey
dynamic order parameter takes a nonzero value from a zel@] also studied the temperature variation of the ac suscepti-
value. In the field amplitude and temperature plane theréility components near the dynamic transition point. The ma-
exists a distinct phase boundary separating dynamic ordergdr observation was that the imaginafiea) part of the ac
(nonzero value of order parametand disorderedorder pa-  susceptibility gives a pealdip) near the dynamic transition
rameter vanishegphases. A tricritical poinfseparating the point (where the dynamic order parameter vanighdhe
nature (discontinuous continuolf the transitio, on the  important conclusions weré) this is a distinct signal of
phase boundary line, was also observed by th8mHow-  phase transition, andi) this is an indication of the thermo-
ever, one may argue that such a MF transition is not trulydynamic nature of the phase transition. The Debye relaxation
dynamic in origin since it exists even in the quasistéic  of the dynamic order parameter and the critical slowing
zero frequencylimit. This is because, if the field amplitude down were studied very recenflg¢1] both by MC simulation
is less than the coercive fieldt a temperature less than the and by solving the dynamic MF equati¢®] of motion for
the average magnetization. The specific-heat singulgkity
near the dynamic transition point is also an indication of the
*Electronic address: muktish@physics.iisc.ernet.in thermodynamic nature of this dynamic phase transition. It is
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worth mentioning here that the statistical distribution of thestep. The instanteneous magnetizatigper sitg, m(t)
dynamic order parameter was studied by Sieleal.[8]. The = (1/L?)S;s7, has been calculated. From the instanteneous
nature of the distribution changésom bimodal to unimo-  magnetization, the dynamic order parameter
dal) near the dynamic transition point. They also observedQ=(w/27)$m(t)dt (time-averaged magnetization over a
[8] that the fluctuation of the hysteresis loop area becomesull cycle of the oscillating fieldl is calculated. Some of the
considerably larger near the dynamic transition point. transient loops have been discarded to obtain the stable value
In the case of equilibrium phase transitions, theof the dynamical quantities.
fluctuation-dissipation theorei@=DT) states(due to the ap-
plicability of Gibbs formalism that the mean square fluctua-
tions of some intrinsic physical quantitiésay, energy, mag-
netization etg. are directly related to some responses A. Temperature variations of susceptibility and fluctuation
(specific heat, susceptibility ejcof the system. Conse- of dynamic order parameter
qguently, near the ferropara transition point, both the fluctua- The fluctuation of the dynamic order parameter is
tion of magnetization and the susceptibility show the same
singular behavior. If it is of power law type, the same singu- 5Q%=((Q*—(Q)?),
lar behavior will be characterized by the same exponent.
This is also true for the fluctuation of energy and the SpeCifiCWhere< > stands for the averaging over various Monte Carlo
heat. These are the consequences of the fluctuatiogamples.
dissipation theorerfil]. Here the main motivation is to study  The susceptibility is defined as
the fluctuations and corresponding responses near the dy-
namic transition temperature. d(Q)
In this paper, the fluctuations of the dynamic order param- X=— dhg
eter and the energy are studied as a function of temperature

near the dynamic transition point. The temperature variationgIere a square lattice of linear site(=100 was consid-

of “susceptibility” and “specific heat” are also studied near ered.(Q2) and(Q) are calculated using MC simulation. The
the transition point. The temperature variation of the ﬂUCt“a'averaging was done over 100 differefumcorrelateti MC
tion of the dynamic order parameter and that of the Susceps'amples

tibility are compared. Similarly, the temperature variation of The temperature variations of the fluctuation ®f i.e.,

the fluctuation of energy and that of the specific heat are5Qz and susceptibilityy, have been studied here, and both

compared._The paper IS Org?‘”'zed as follows: the model angre plotted in Fig. 1. From the figure it is observed that both
the simulation scheme are discussed in Sec. Il, the results arg-» and y diverge near the dynamic transition poiathere

reported in Sec. Ill, and Sec. IV contains a summary of theQ vanishes
work.

Ill. RESULTS

This was studied for two different values of field ampli-
tude hg [Fig. 1(a) is for hy = 0.2 and Fig. 1b) is for hy
Il. MODEL AND SIMULATION =0.1]. The dynamic transition temperaturég(hy), at

H 2 Hi —
The Ising model with nearest neighbor ferromagnetic couyvhICh x and8Q” diverge, are 1.910.01 forh, = 0.2 and

ling in the presence of a time-varying magnetic field can b(.;'lSi 0.01 forho = 0.1. These values alq(ho) agree with
Eelprgelsentedpby the Hamiltcljniar\ll ying ghetic i the phase diagram estimated from vanishing @f The

Ing(x) versus In(Ty—T) and In(8Q?) versus Ip(T4—T) plots
show (insets of Fig. 1 that x~(T4—T) ¢ and
H=—2 Jjsis'—h() > s (2.))  8Q2~(T4—T) “ Forhy = 0.2, «~0.53[inset of Fig. 1a)]
Ul ' and forh, = 0.1, a~2.5[inset of Fig. 1b)]. Results show
. ) ) , , . , that bothy and Q2 diverge neaff 4 as a power law with the
Here,s;(==1) is the Ising spin variable);; is the interac-  g3me exponent, though there is a crossover regimhere
tion strength, andh(t) =hgcos(wt) represents the oscillating he effective exponent values are diffepent
magnetic field, wherdn, and w are the amplitude and the

frequency, respectively, of the oscillating field. The system is
in contact with an isothermal heat bath at temperaturor
simplicity all J;;(=J>0) are taken equal to unity, and the
boundary condition is chosen to be periodic. The temperature The time averagetbver a full cyclg cooperative energy
(T) is measured in units af/K, whereK is the Boltzmann of the system is
constant(hereK is taken to be unity

A square lattice of linear size (=100) has been consid- E=— (w/27rL2)56( E s-zs?) dt
ered. At any finite temperatur® and for a fixed frequency T A
(w) and amplitude if,) of the field, the microscopic dynam-
ics of this system was studied here by Monte Carlo simulaand the fluctuation of the cooperative energy is
tion using Glauber single spin-flip dynamics with a particular
choice of the Metropolis rate of single spin-flip2]. Starting SE2=((E?)—(E)?).
from an initial condition where all spins are up, each lattice
site is updated here sequentially, and one such full scan ovédthe specific-hea€ [11] is defined as the derivative of the
the entire lattice is defined as the unit time st®fonte Carlo  energy(defined abovewith respect to the temperature, and

B. Temperature variations of specific heat
and fluctuation of energy
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FIG. 1. Temperature variations ¢f), x, and Q2 for two _ FIG. 2. Tempergture var_iations ¢l), C, and SE2 for two
different values of field amplitudeisy: (@) Forh, = 0.2;Q (solid  different values of field g‘mP“tUdd*o: (& Forhoe = 0.2;Q (solid
line), x (circles, and 5Q? (triangles. (b) For hy = 0.1;Q (solid M€, C (circles, and 5B (triangles. (b) For hy = 0.1, Q (solid
Iine), % (CirCleS, and5Q2 (triangleQ. All the data points are plotted !Ine), C (Cer'e.g, andSE (trlangles). All the data pOl.ntS -are plotted
in arbitrary units. Heres = 27X 0.01. Corresponding insets show N arbitrary units. Hereo_= 27X 0.01. Corzrequndlng |nsets_show
the plots of In(y) (circles and In(&Q?) (triangles against (e plots of In(C) (circles and In(6E%) (triangles against
In(T4—T). Solid lines represent the linear best fit in a region Verylne(Td—‘D. Solid lines represent the linear best fit in the region very

close toTy. close toTy.
ture variation of the fluctuation of energyk)? was studied,
o d(E) and is plotted in Fig. 2. From the figure it is clear that the
daT -’ mean square fluctuation of energyH?) and the specific

heat (C) both diverge near the dynamic transition point

Here, also a square lattice of linear slz€=100 was con- (where the dynamic order paramet@rvanishes
sidered.(E?) and(E) are calculated using MC simulation. ~ This was studied for two different values of field ampli-
The averaging was done over 100 differéohcorrelateyl  tude hy [Fig. 2(@) is for hy = 0.2 and Fig. &) is for hg
MC samples. =0.1]. Here also(like the earlier casethe specific hea€

The temperature variation of the specific heat was studiednd SE2 are observed to diverge at temperatufgs The
[11], and prominent divergent behavior was found near theemperatured4(h,), at whichC and 6E? diverge, are 1.91
dynamic transition poinfwhere(Q) vanishes The tempera- +0.01 forh, = 0.2[Fig. 2@] and 2.15-0.01 forhy = 0.1
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[Fig. 2(b)]. These values also agree with the phase diagrarthat although the effective exponent values for the fluctua-
estimated from vanishing @@. The In(C) vs In(T4—T) and  tion and the appropriate linear response differ considerably,
Ing(6E?) vs In(Ty—T) plots show (insets of Fig. 2 that away from the dynamic transition poifiy they eventually
C~(T4—T) 7 and SE?~(T4—T) ?. For h, = 0.2, converge and give identical value as the temperature interval
y~0.35[inset of Fig. 2a)] and forhy, = 0.1, y~0.43[inset  |T4—T| decreases and falls within a narrow crossover re-
of Fig. 2(b)]. Like the earlier case, here also the results showgion. These numerical observations indicate that the
that bothy and 8Q? diverge neail 4 as a power law with the  fluctuation-dissipation relatioft] holds well in this case of
same exponent, though there is a crossover regitwhere  the nonequilibrium phase transition in the kinetic Ising

the effective exponent values are diffenent model. However, at this stage, to our knowledge, there is no
analytic support of the FDT in this case.
IV. SUMMARY Finally, it should be mentioned, in this context, that ex-

o . o _ periments[9] on ultrathin ferromagnetic Fe/A001) films
The noneqUIIIbrlum dynamlC phase transition in the k|'Were performed to Study the frequency dependence of hys-
netic Ising model, in the presence of an oscillating magnetiggresis loop areas. Recently, attempts were mdd@ to
field, is studied by Monte Carlo simulation. Acharyya andmeasure the dynamic order paramefeexperimentally, in
Chakrabarti[7] observed that the complex susceptibility the same material, by extending their previous sti@lyThe
components have peaker dips at the dynamic transition - gynamic phase transition was studied from the observed tem-
point. Sideset al. [8] observed that the fluctuation in the perature variation o). However, a detailed investigation of
hysteresis loop area growseems to divergenear the dy-  the dynamic phase transitions by measuring variations of as-
namic transition point. It has been observdd] that the  gociated response functiottiike the ac susceptibility, spe-
relaxation time and the appropriately defined specific heagific heat, correlations, relaxations, thas not yet been

diverge near the dynamic transition point. performed experimentally, to our knowledge.
The mean square fluctuation of dynamic order parameter

and the susceptibility are studied as a function of tempera-
ture, near the dynamic transition point. Both show the power
law variation with respect to the reduced temperature near The author would like to thank B. K. Chakrabarti for criti-
the dynamic transition point with the same exponent valuescal remarks and for a careful reading of the manuscript. The
Similar, observation has been made for the case of mealNCASR, Bangalore, is gratefully acknowledged for finan-
square fluctuation of the energy and specific heat. It appeaxdal support and for computational facilities.
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